Contributor Name: CGIAR Research Program on Wheat (WHEAT) Contributor Name: Genetic Resources Program (GRP) Author Name: Crossa, Jose Author Name: Gianola, Daniel Keyword Term: Wheat Keyword Term: Triticum aestivum
1 to 3 of 3 Results
Dataset / Software
Sep 28, 2018 - CIMMYT Research Data
Montesinos-López, Osval A ; Montesinos-López, Abelardo; Crossa, Jose; Gianola, Daniel ; Hernández-Suárez, Carlos M.; Martín-Vallejo, Javier, 2018, "Supplemental data for multi-trait, multi-environment deep learning modeling for genomic-enabled prediction of plant traits", hdl:11529/10548134, CIMMYT Research Data & Software Repository Network, V1
This study provides supplemental data to support an investigation of the power of multi-trait deep learning (MTDL) models in terms of genomic-enabled prediction accuracy. |
Dataset / Software
Jul 12, 2019 - CIMMYT Research Data
Howard, Reka; Gianola, Daniel; Montesinos-López, Osval; Juliana, Philomin; Singh, Ravi; Poland, Jesse; Shrestha, Sandesh; Perez-Rodriguez, Paulino; Crossa, Jose; Jarquin, Diego, 2019, "Replication Data for: Joint use of genome, pedigree and their interaction with environment for predicting the performance of wheat lines in new environments", hdl:11529/10548169, CIMMYT Research Data & Software Repository Network, V3
In this study, we evaluated genome-based prediction using 35,403 wheat lines from the Global Wheat Breeding Program of the International Maize and Wheat Improvement Center (CIMMYT). We implemented eight statistical models that included genome-wide molecular marker and pedigree in... |
Dataset / Software
Aug 15, 2019 - CIMMYT Research Data
Crossa, Jose; Martini, Johannes; Gianola, Daniel; Pérez-Rodríguez, Paulino; Burgueño, Juan; Singh, Ravi; Juliana, Philomin; Montesinos-López, Osval; Cuevas, Jaime, 2019, "Deep kernel and deep learning for genomic-based prediction", hdl:11529/10548273, CIMMYT Research Data & Software Repository Network, V1
Deep learning (DL) is a promising method in the context of genomic prediction for selecting individuals early in time without measuring their phenotypes. iI this paper we compare the performance in terms of genome-based prediction of the DL method, deep kernel (arc-cosine kernel,... |