Contributor Name: CGIAR Research Program on Wheat (WHEAT) Contributor Name: Global Wheat Program (GWP) Keyword Term: Triticum aestivum Contributor Name: CGIAR Contributor Name: Bill and Melinda Gates Foundation (BMGF) Author Name: Montesinos-López, Abelardo
1 to 2 of 2 Results
Dataset / Software
Sep 28, 2018 - CIMMYT Research Data
Montesinos-López, Osval A ; Montesinos-López, Abelardo; Crossa, Jose; Gianola, Daniel ; Hernández-Suárez, Carlos M.; Martín-Vallejo, Javier, 2018, "Supplemental data for multi-trait, multi-environment deep learning modeling for genomic-enabled prediction of plant traits", hdl:11529/10548134, CIMMYT Research Data & Software Repository Network, V1
This study provides supplemental data to support an investigation of the power of multi-trait deep learning (MTDL) models in terms of genomic-enabled prediction accuracy. |
Dataset / Software
Jul 18, 2019 - CIMMYT Research Data
Cuevas, Jaime; Montesinos-López, Osval A; Juliana, Philomin; Pérez-Rodríguez, Paulino; Burgueño, Juan; Guzman, Carlos; Montesinos-López, Abelardo; Crossa, Jose, 2019, "Deep kernel of genomic and near infrared predictions in multi-environment breeding trials", hdl:11529/10548180, CIMMYT Research Data & Software Repository Network, V4
In genomic prediction deep learning artificial neural network are part of machine learning methods that incorporate parametric, non-parametric and semi-parametric statistical models. Kernel methods are seeing more flexible, and easier to interpret than neural networks. Kernel met... |